skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rigo, Sandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Computational demand has brought major changes to Advanced Cyber-Infrastructure (ACI) architectures. It is now possible to run scientific simulations faster and obtain more accurate results. However, power and energy have become critical concerns. Also, the current roadmap toward the new generation of ACI includes power budget as one of the main constraints. Current research efforts have studied power and performance tradeoffs and how to balance these (e.g., using Dynamic Voltage and Frequency Scaling (DVFS) and power capping for meeting power constraints, which can impact performance). However, applications may not tolerate degradation in performance, and other tradeoffs need to be explored to meet power budgets (e.g., involving the application in making energy-performance-quality tradeoff decisions). This paper proposes using the properties of AMR-based algorithms (e.g., dynamically adjusting the resolution of a simulation in combination with power capping techniques) to schedule or re-distribute the power budget. It specifically explores the opportunities to realize such an approach using checkpointing as a proof-of-concept use case and provides a characterization of a representative set of applications that use Adaptive Mesh Refinement (AMR) methods, including a Low- Mach-Number Combustion (LMC) application. It also explores the potential of utilizing power capping to understand power- quality tradeoffs via simulation. 
    more » « less